Abstract: Towards the goal of real-time navigation of autonomous robots, the Iterative Closest Point (ICP) based LiDAR odometry methods are a favorable class of Simultaneous Localization and Mapping (SLAM) algorithms for their robustness under any light conditions.
Abstract: Towards the goal of real-time navigation of autonomous robots, the Iterative Closest Point (ICP) based LiDAR odometry methods are a favorable class of Simultaneous Localization and Mapping (SLAM) algorithms for their robustness under any light conditions.
Abstract: Recent advances in neural reconstruction using posed image sequences have made remarkable progress. However, due to the lack of depth information, existing volumetric-based techniques simply duplicate 2D image features of the object surface along the entire camera ray.
Abstract: Conventional self-supervised monocular depth prediction methods are based on a static environment assumption, which leads to accuracy degradation in dynamic scenes due to the mismatch and occlusion problems introduced by object motions.
Abstract: Self-supervised monocular depth prediction provides a cost-effective solution to obtain the 3D location of each pixel. However, the existing approaches usually lead to unsatisfactory accuracy, which is critical for autonomous robots.
Abstract: Recently significant progress has been made in 3D detection. However, it is still challenging to detect small contour objects under complex scenes. This paper proposes a novel Attention-based Multi-phase Multi-task Fusion (AMMF) that uses point-level, RoI-level, and multi-task fusions to complement the disadvantages of LiDAR and camera, to solve this challenge.
Abstract: Accurate localization on the autonomous driving cars is essential for autonomy and driving safety, especially for complex urban streets and search-and-rescue subterranean environments where high-accurate GPS is not available. However current odometry estimation may introduce the drifting problems in long-term navigation without robust global localization.
Abstract: This paper proposes a real-time multi-scale semantic segmentation network (MsNet). MsNet is a combination of our novel multi-scale fusion with matching attention model (MFMA) as the decoding network and the network searched by asymptotic neural architecture search (ANAS) or MobileNetV3 as the encoding network.
Abstract: Military ground vehicles operate in off-road environments traversing different terrains under various environmental conditions. There has been an increasing interest towards autonomous off-road vehicle navigation, leading to the needs of terrain traversability assessment through sensing.
Abstract: The fundamental aspect of unmanned ground vehicle (UGV) navigation, especially over off-road environments, are representations of terrain describing geometry, types, and traversability. One of the typical representations of the environment is digital surface models (DSMs) which efficiently encode geometric information.