Abstract: The feature pyramid, which is a vital component of the convolutional neural networks, plays a significant role in several perception tasks, including object detection for autonomous driving. However, how to better fuse multi-level and multi-sensor feature pyramids is still a significant challenge, especially for object detection.
Abstract: Current learning-based 3-D object detection accuracy is heavily impacted by the annotation quality. It is still a challenge to expect an overall high detection accuracy for all classes under different scenarios given the dataset sparsity.
Abstract: Recently significant progress has been made in 3D detection. However, it is still challenging to detect small contour objects under complex scenes. This paper proposes a novel Attention-based Multi-phase Multi-task Fusion (AMMF) that uses point-level, RoI-level, and multi-task fusions to complement the disadvantages of LiDAR and camera, to solve this challenge.
Abstract: In recent years, semi-supervised learning has been widely explored and shows excellent data efficiency for 2D data. There is an emerging need to improve data efficiency for 3D tasks due to the scarcity of labeled 3D data.
Abstract: Accurate localization on the autonomous driving cars is essential for autonomy and driving safety, especially for complex urban streets and search-and-rescue subterranean environments where high-accurate GPS is not available. However current odometry estimation may introduce the drifting problems in long-term navigation without robust global localization.
Abstract: This paper proposes a real-time multi-scale semantic segmentation network (MsNet). MsNet is a combination of our novel multi-scale fusion with matching attention model (MFMA) as the decoding network and the network searched by asymptotic neural architecture search (ANAS) or MobileNetV3 as the encoding network.
Abstract: The fundamental aspect of unmanned ground vehicle (UGV) navigation, especially over off-road environments, are representations of terrain describing geometry, types, and traversability. One of the typical representations of the environment is digital surface models (DSMs) which efficiently encode geometric information.
Abstract: The concrete aging problem has gained more attention in recent years as more bridges and tunnels in the United States lack proper maintenance. Though the Federal Highway Administration requires these public concrete structures to be inspected regularly, on-site manual inspection by human operators is time-consuming and labor-intensive.
Abstract: Driving inattention caused by drowsiness has been a significant reason for vehicle crash accidents, and there is a critical need to augment driving safety by monitoring driver drowsiness behaviors. For real-time drowsy driving awareness, we propose a vision-based driver drowsiness monitoring system (DDMS) for driver drowsiness behavior recognition and analysis.
Abstract: This paper presents a novel metric inspection robot system using a deep neural network to detect and measure surface flaws (i.e., crack and spalling) on concrete structures performed by a wall-climbing robot.