Abstract: The concrete aging problem has gained more attention in recent years as more bridges and tunnels in the United States lack proper maintenance. Though the Federal Highway Administration requires these public concrete structures to be inspected regularly, on-site manual inspection by human operators is time-consuming and labor-intensive.
Abstract: Handicapped individuals often rely heavily on various assistive technologies including wheelchairs and the purpose of these technologies is to enable greater levels of independence for the user. In the development of autonomous wheelchairs, it is imperative that the wheelchair maintains appropriate stability for the user in an outdoor urban environment.
Abstract: Embodiments described herein may provide a method for generating a three-dimensional vector model of the interior of a structure. Methods may include: receiving sensor data indicative of a trajectory; receiving sensor data defining structural surfaces within a structure; generating a three-dimensional point cloud from the sensor data defining structural surfaces within the structure; segmenting the three-dimensional point cloud into two or more segments based, at least in part, on the sensor data indicative of trajectory; generating a three-dimensional surface model of an interior of the structure based on the segmented three-dimensional point cloud with semantic recognition and labelling; and providing the three-dimensional surface model of an interior of the structure to an advanced driver assistance system to facilitate autonomous vehicle parking.
Abstract: This paper presents a novel metric inspection robot system using a deep neural network to detect and measure surface flaws (i.e., crack and spalling) on concrete structures performed by a wall-climbing robot.
Abstract: This paper presents a new holistic vision-based mobile assistive navigation system to help blind and visually impaired people with indoor independent travel. The system detects dynamic obstacles and adjusts path planning in real-time to improve navigation safety.
Abstract: The mobility on stairways is a daily challenge for seniors and people with dyskinesia. Lower limb exoskeletons can be effective assistants to improve their life quality. In this paper, we present an adaptive stair-ascending gait generation algorithm based on a depth camera for lower limb exoskeletons.
Abstract: In this paper, we exploit the concrete surface flaw inspection through the fusion of visual positioning and semantic segmentation approach. The fused inspection result is represented by a 3D metric map with a spatial area, width, and depth information, which shows the advantage over general inspection in image space without metric info.
Abstract: We present a novel collaborative mapping and autonomous parking system for semi-structured multi-story parking garages, based on cooperative 3-D LiDAR point cloud registration and Bayesian probabilistic updating. First, an inertial-enhanced (IE) generalized iterative closest point (G-ICP) approach is presented to perform high accuracy registration for LiDAR odometry, which is loosely coupled with inertial measurement unit using multi-state extended Kalman filter fusion.
Abstract: This paper presents a novel randomized path planning algorithm, which is a goal and homology biased sampling based algorithm called Multiple Guiding Attraction based Random Tree, and robots can use it to tackle pop-up and moving threats under kinodynamic constraints.
Abstract: This paper presents an innovative wearable system to assist visually impaired people navigate indoors in real time. Our proposed system incorporates state-of-the-art handheld devices from Google’s Project Tango and integrates path planner and obstacle avoidance submodules, as well as human-computer interaction techniques, to provide assistance to the user.